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Normal forms and nonlinear symmetries
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f Dipartimento di Fisica, Universitd di Pisa, Piazza Torricelli 2, I-56126 Pisa, Italy
} Centre de Physique Théorique, Ecele Palytechnique, F-91128 Palaiseau, France

Received 30 March 1994

Abstract. We give some general theorems, and extensions of previous resalts, concerning the
problem of transforming an algebra of vector figlds into Poincaré normal form. By means of
a unifying algebraic language, we show the possibility of obtaining either a ‘pacallel’ or ‘joint’
normal form of the vector fields in a definite way, which simplifies the construction of normal
forms, providing a precige restriction on their structure, The application to finite-dimensional
dynamical systems and their Lie point symmetries is also discussed.

1. Intreduction and notations

The problem of transforming a vector field (VF) (or an algebra of vFs) into normal form (NF)
(in the sense of Poincaré-Dulac-Birkhoff) is an old and important topic [1-10], not only
for its algebraic aspects, but also for its applications in the theory of dynamical systems
(D8}, especially in connection with symmetry properties [1-12].

Quite different approaches and points of view (‘algebraic’, ‘analytical” or ‘dynamical’)
for this problem can be found in the literature and it is not uncommon for the differences
in the language to make it difficult to compare (even apparently unrelated but strongly
connected) results.

In this paper, we propose some general results, and extensions of previous statements, in
an (essentially) self-contained presentation, using a geometrical approach similar to that in
[12] with an abstract and ‘unifying’ algebraic langnage, but avoiding, as far as possible, any
technicality (section 2). The applications to DS and their symmetries (Lie point symmetries)
are discussed in section 3.

Let us recall some basic definitions and fix our notation. Let u € M C R", where M
is a smooth neighbourhood of the origin in R”, and consider the space V of analytical VFs
@: M — TMin R": they are in one-to-one correspondence with the elements of the space
V of analytical functions f : M — R", in component expansion, we shall write (here, and
in the following, summed over repeated indices, unless otherwise stated)

3
9= f@h=fitdz—  (=1...n. (1.1)

We assume that # = 0 is an isolated fixed point for f(u); f(u) will also be written as a
series expansion in the form

f=Aut+f=) fp (1.2)
i=1
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where Au = fy) is the linear part of £, f is the nonlinear part and fi, € V) is the
subspace of the homogeneous polynomial functions in V of degree j.

Given two VFs, p = f8, and ¢ = g8, in V, the notion of Lie commutator [¢, ¥] in 1
induces a Lie—Poisson bracket {f, g] in V:

2
e, ¥]1={f gldu {figh = fidige — 80 f (ai = 'a-;") (1.3)

Also, a notion of scalar product can be introduced in each subspace Vi;y [9,12].
Given an n x # matrix A, we denote by A : V — V the homological operator associated
to A (which is also the Lie derivative £,4 along the VF Aud,)

A(he) = (Au)idihy — (AR), (1.4)

where ki = k{(n) € V. According to the classical Poincaré-Dulac-Birkhoff definition [1], 2
(nonlinear) term h(u) is said o be resonant with A if (see also [9])

At (h) ={ATu, h} =0 (1.5)
and a VF, ¢ = (Au + f )3y, is said to be in normal form (NF) if all nonlinear terms are
resonant with A, i.e. f € Ker A*. If 4 is diagonal, with eigenvalues ey, . . ., &¢,, 2 monomial
Be(u) = uy"-...-w of degree j (with m; integer numbers such that ¥, m; = j, m; > 0) is

resonant if m;o; = &, which is the usual ‘resonance condition” for the eigenvalues [1]. As
is well known, the relevance of the above definitions is essentially due to the fact that, given
2 VF g, all non-resonant terms can be removed by means of a coordinate transformation.
As uwsual, in NF theory, these transformations are expressed by means of formal series, l.e.
no assumption is made on their convergence (cf [1]).

Notice that for both operators A and .A* one has, for each j,

A: Vu) - V(J') and .A+ . V{j) —_ VU)' (16)

If A= L, and B = Lz are the homological operators associated to two 7 X n matrices A
and B, the operator AB — B.A is just the homological operator C = L associated to the
matrix commutator C = [A, B]. In particular, the three statements AB = BA, [A,B] =0
and {Au, Bu} = 0 are equivalent.

Finally, if A is any n x n matrix, we shall denote its (unique) decomposition into
commuting semisimple (diagonalizable) and nilpotent parts by

A=A+ A, (1.7

2. The algebraic approach
The main results will be obtained as a consequence of a series of simple lemmas, which
can be of some independent interest: even if some of these are not new, it is convenient to

give a complete list of all of them, together with a sketch of their proofs.

Lemma 1. 1f[A, B] =0 then [As, B] = [A, B,] = 0.
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Proof. This eastly follows from writing the matrix A (or resp. B) in its Jordan form: and
then imposing the commutation properties in the generalized eigenspaces. O

Lemma 2. Given the matrix A, the set Ker A* of terms A(«) resonant with A is given by
K (k(u))u, where K is the most general matrix such that [K, A*] = 0 and its entries K;
are functions of the time-independent analytical constants of motion & = x () of the linear
system &t = Atu [9,12].

Proof. Writing the equation A*(#) = 0 explicitly as a system of first-order partial
differential equations
dhy,

(A*u)i— = (A%h), 2.1
Bu,-
one obtains a system ‘with the same principal part’ [13], with characteristic equations
duy N du, _ dh, L dh, @1
(A*u)p (Atu)y  (ATh) (A*h)y '

Applying standard procedures [13,9,12], one obtains that & = Ku, where K is a matrix
commuting with A* and depends on the constants of integration of the subset of equations
involving the first # terms du;/ (Atu) ; in (2.1"). These are just the constants of motion of
the problem & = A" u. O

Lemma 3. Ker A C Ker.A;; Ker AT C Ker.4,, where A is the homological operator
associated to the semisimple part A of A.

Proof. According to lemma 1, if X commutes with A¥, then it also commutes with A
(= AF). On the other hand, the solutions of the linear systems & = Agu and & = A™u are
combinations of terms e%’ and t*e®*, respectively. Therefore, the constants of motion which
can be constructed for the second system, with the property of being time-independent and
expressed in analytical form, are certainly also constants of motion of the first system (but
the converse is not true}. The statement of lemma 3 then follows from lemma 2. (|

Lemma 4, If o= (Au+ 8, and ¥ = (Bu+§)8, form a two-dimensional algebra, then it
is possible to perform a (formal) coordinate transformation which takes the nonlinear terms
f into normal form with respect to A, and £ with respect to B (‘paralle! normal form').

Proof. Up to a linear transformation, any two-dimensional algebra satisfies the
commutation rule

[p, ¥l =cy (2.2)
where ¢ is any constant (including ¢ = 0). First of all, we can always put g into NF with
respect to B, so, let us assume (without changing notation)

§ € Ker B+
where BY is the homological operator associated to B*. Now, from (2.2), [A, B] =c¢B, or
[A*, B*] = —¢B*, which implies, in terms of the homological operators,

BYA*(E) = ANBT(E) - BT (@) =0
i.e. AT(Z) € Ker B* or A* : Ker B¥ — Ker B*. This ensures the possibility of performing
another transformation, leaving the space Ker B* of the terms resonant with B invariant
in such a way as to change the terms F into NF with respect to A, Then, we can choose
coordinates in such a way that:

f e Ker A* and g € KerB*, O

We can now state the first main result.
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Theorem 1. Let ¢ == f(u)d, = (Au + f)c')“. ¥ = g(u)ay = (Bu + £)9, satisfy
[, ¥]=0 (2.3)

then, by means of a formal coordinate transformation, f, § can be taken into a ‘joint normal
form’ (INF) of this type:

f e Ker AT NKer B, and 2 € Ker A, N Ker B*. (24)
Proof. From lemmas 3 and 4, we get
F e Ker AT c Ker A, and g € Ker B* C Ker B,. (2.5)

Let us now write (2.3} step by step, with

[=s] o
Fuy=Au+Y_ fi ad g} =Bu+y g, (2.6)
i=2 =2
We have first
[A,B]l=0 .
and
{Au, gy} — {Bu, f} =0 or Algay) = B(f@) (2.8)
whereas, for k > 2,
k=1
{Au, gy} — (Bu, fao} =) _{Fuy 8ue—sinr}- 2.9)
=2

Applying operator A; to (2.8), and using lemma 1, we obtain, thanks to (2.5),

As(A(ge)) = BlA(Fgy) =0
and also A2(g@) = 0, which implies

As(gm) =0

In fact, since A; is a diagonalizable matrix, we can choose coordinates such that Ker .4;
is the orthogonal complement to Ran A; in the space Viz. Repeating the argument for the
operator B; applied to (2.8}, we get similarly

B(fn =0,
An immediate application of the Jacobi identity shows that if
f(_j), g(;)eKerAsr"lKerBs Vi,j:?,...,k—]

then the same is true for
k=1
o 8w} and > Uiy Bu-ien}. (2.10)
=2
This allows us to proceed inductively: applying the operators .4; and 5 to (2.10), we can
conclude, for all j, that f;) € Ker B; and g(;; € Ker.4;, which, together with (2.5), gives
the result. O
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The possibility of extending the above results (namely, lemma 4 and theorem 1) to
algebras of dimension d > 2 is clearly related to the specific commutation properties of the
algebra. We consider here some special cases.

Theorem 2. Let us consider a d-dimensional algebra G of VFs spanned by ¢, = fad, =
(Aqu+ fz)8, (a=1,...,d). Then: B

(i) If the algebra G is selvable, then all the nonlinear terms £, can be put in parallel NF,
namely

fo € Ker AT foreacha=1,...,d. (2.11)

(ii) If the algebra G is niipotent (in particular: abelian), then one can put all f, into a
INF precisely (with obvious notations)

fa€ (ﬂKerAb,_,) M Ker A7 foreacha=1,...,d. (2.12)
b#a

(iii) In any solvable (resp.: nilpotent, or, in particular, abelian) subalgebra of a generic
algebra G, all ponlinear terms can be put in parallel NF as in (2.11) (resp.: in INF as in
(2.12)).

Proaf. If the algebra is solvable, let 'us consider the sequence of commutators terminating
in 0
[o, 0] = o, [0\, oW = 0@, ..., [¢", p"] =0 (2.13)

where [¢, @] = ¢ stands for the subalgebra of all commutators [g,, 5], etc. In the ideal
G, spanned by ¢, all nonlinear terms of the VFs can be taken in NF (or even in JNF if
dim G > 1: indeed, in this case the subalgebra is abelian and theorem 1 can be directly
applied). Using [p~V, o™~ 1] = ¢ and G~ > g™, we can repeat the argument of
lemma 4 to also show that in G¥~7, parallel NFs can be obtained, and so on. If, now, the
algebra G is nilpotent, let us consider the sequence of commutators terminating in ¢

lg, @1 = pM(= ™), [g, oM = 02, ..., [0, ™] = 0. (2.14)

The first part of this theorem ensures (since nilpotency implies solvability) that all fo can
be taken in their respective NF: f, € Ker AT, On the other hand, the last commutator in
(2.14) shows that all fields in the abelian ideal GI™] spanned by @™ commute with all the
@, € G. Then, the procedure followed in the proof of theorem 1 can be repeated for each
@z € G, using the last commutator in (2.14) to obtain (2.12). Statement (iti) is an immediate
consequence. O

Remark 1. The result in theorem 1 and its extension in theorem 2(ii) are generalizations of
theorem 2.21 of [7], which gives in fact f, € ), Ker.4p,. Notice that condition f & Ker At
is actually a rather stronger restriction for f than f e Ker A, the space Ker A being, in
general, considerably smaller than the space Ker.4;, as simple examples can easily show.
Notice also that, in general, it is not possible to extend the result in theorem 1 (and in
2(ii) as well) to also have, for example, f & KerB or f € Ker B%. The case of solvable
algebras is quite different: e.g. if [p, ¥] = 4, then [A, B] = B, but this implies B; =
and therefore one gets, in this case, B; = 0.

t Any two-dimensional nilpotent algebra is in fact abelian. Unfortunately, reference [7] came to our knowledge
only after our paper [12]—which contains results already obtained in [7], although by different methods—was
published.



7120 G Cicogna and G Gaeta

Remark 2. In NF theory, it is usual to give special attention to the case of VFs with normal
linear parts, i.e. [A, A™] = 0 [12]. Here, we will not consider this restriction: the general
results given here can of course be specialized to this case (obtaining, among others, some
of the results given in [12]). For instance, equation (2.12) becomes immediately, with this
restriction,

o €[] Ker Ap. (2,12
b

3. Applications to DS and their symmetry properties

Let us now apply the above algebraic results to the case of (finite-dimensional) DS. With
u=u(tye M CR" let

b= fu) = Au+ fu) @3.1)

be a DS, where it = du/dt and f(0) =0.
Denoting by ¢ = f9, the VF expressing the dynamical flow of this DS, any VF ¢ = gd,,
such that

[p,¥]=0 3.2)

is the generator of a Lie point time-independent (LPTI) symmetry of this DS [14-16] (see
also [11,12,17-21] and references therein). Therefore, according to theorem 1, one can
choose coordinates in such a way that both vFs ¢ and ¢ are in INF (2.4). In concrete cases,
once the D§ is given, a typical problem is that of finding its LPTI symmetries: then, the set
of equations (2.7)—+2.9) may be used, in practice, in order to construct, recursively, step by
step, the symmetry field, and the INF condition (2.4) determines the nonlinear terms which
may be removed, both in the DS and in the VF describing the symmetry.

Remark 3. Clearly, it is not granted, in general, that, as for the NF transformations, the LPTI
symmetries of a DS can be written as a series expansion (for a very recent and important
result in this direction, see [22]; examples of ‘singular’ LPTI symmetries can be found, e.g.,
in [18,19]). Let us notice, however, that the method of proceeding step by step may be
concretely useful in constructing ‘approximate’ symmetries, i.e. ‘up to the a given (finite)
order’ {17] (see also [23]). Some sufficient conditions ensuring the existence of (polynomial)
LPTI symmetries, and some explicit examples, can be found in [11,12,18-21], A (linear)
symmetry which is always present (unless A;, the semisimple part of 4, is = () is given
by the following proposition.

Proposition 1. Any DS (3.1) which is in NF, i.e. with f € Ker A*, admits the linear
symmetry generated by

o = Aud,. (3.3)

If A; is diagonalized, with real eigenvalues o; (f = 1,..., n), this symmetry generates the
scaling u; — u; exp(ea;) (g € R).
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Proof. Symmetry condition (3.2) is certainly satisfied by this o (3.3), indeed
{Au+ F, Au} = (f, A} =0
as a consequence of the resonance assumption and lemma 3. -

This generalizes proposition 4 of [11], where a diagonalizable A was assumed, and
another result contained in [9] which—in the present language—may be stated as follows.
If the DS (3.1) is in NF, then (A+u)8, is a symmetry for the nonlinear part of the DS & = f
(but not necessarily for the full DS &t = f). Another property of LPTI symmetries and NFs,
which is a direct consequence of (2.4), is given by the following proposition.

Proposition 2. If the DS (3.1) admits a LPTI symmetry ¥ = g3, = (Bu + £)3, and the
fields @, y are in INF, then ¥ is also a symmetry for the linear semisimple part of the DS,
ie. for &4 = Asu (but the converse is not true: i.e. symmetries of this linear system are
not necessarily symmetries for the full DS) and the linear semisimple part Bsud, provides
another symmetry (if B; # 0) for the Ds:

{Aat, g} =0  and  {Bw, f} =0. (3.4)

Clearly, the set {1, ..., ¥} of the LPTI symmetries of a DS spans a Lie algebrat G:
it always contains the VF ¢ giving the dynamical flow. This algebra may be abelian (as
in proposition 3 below) or not. An interesting example of non-abelian symmetry algebra
can be constructed starting from a four-dimensional problem which has the ‘quaternionic
structure’ [24]: the generators of its symmetry span the Lie algebra of the group SU(2) (in
real form).

The possibility of taking in parallel, or JNF, the VFs (g, ¥1,..., ¥} in this algebra
depends on the properties of the algebra itself, according to theorem 2. In any case,
however, being [, ¥,] =0foralla =1,...,r, by the definition of symmetry, the INF is
possible for ¢ and at least one of the 1, or better for all the v, which span an abelian
subalgebra H C G.

Let us consider finally the special case of linearizable Dss, 1.e. DSs for which all terms
are non-resonant and, therefore, can be removed by a (formal) coordinate transformation.

Remark 4. According to the definition, a DS (3.1) is linearizable if Ker A* = {0}. However,
a simple consequence of INF also indicates that a condition ensuring the linearizability of a
DS is that it admits an LPTI symmetry ¥ = (Bu + 2)8, such that Ker A¥ NKer 5; = {0} and,
in general, the same is true if (), Ker B, s)NKer A™ = {0}, where ¥, = (Bpu+2,)0, € H
and H is an abelian subalgebra contained in the algebra G of the admitted symmetries, as
mentioned previously.

We also have:

1 Actually, multiplying an LTt symmetry by any constant of motion of the ps gives another symmetry, so one
should more correctly speak of a (finite-dimensional) medule (rather than of an infinite-dimensional algebra) of
symmetries [20]. Here, we are interested in the algebraic structure, and, therefore, we are considering only
‘independent’ (i.e. pointwise linearly independent) vFs gencrating symmetries.
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Proposition 3. I a DS can be linearized, then it admits n independent commuting
symmetries, which can be simultaneously taken into finear form by 2 coordinate
transformation. If, in particular, the systern has a diagonalizable A with real eigenvalues,
then—once it is linearized and A is diagonal—the dilations §; = #;3; (no sum over i) along
each direction i are n linear commuting symmetries for the system. Conversely, if there
is a coordinate system where the DS admits n independent linear commuting symmetries
o; = B;ud, such that all B; are serisimple, then the DS can be linearized.

Progf. In the coordinates where the DS is linear, it is easy to construct n linear commuting
symmetries B;ud, by simply choosing r independent matrices B; commuting among
themselves and with A (if the matrices I, A, A%, ..., A""! are linearly independent, they
immediately provide the matrices B,; even if this is not the case, the existence of »
matrices B; with the required properties is easily verified if A is put in Jordan form). The
existence of n independent scalings ¢; in the case of diagonal A is obvious. Conversely,
given n semisimple commuting matrices B;, they can be simultanecusly diagonalized:
B, — diag(8", ..., B"); now, with respect to the basis spanned by the n (independent)
vectors B0 = (B9, ..., BM), the symmetries o; = B;ud, become o; — & = u;9; (no
sum over i), i.e. the independent dilations along the directions 7. A DS admitting such n
symmetries is necessarily linear.

4, Examples and concluding remarks

We shall first illustrate the basic preliminary results of lemmas 2 and 3 by means of a simple
example. Let us consider the VF ¢ = 9, with n =3

10 0
f = Au+h) A= (1 1 0 ) (4.1}
0 0 -2

where A is non-diagonalizable. Considering the two linear problems i = Aqu and &t = Aty,
and putting 4 = {x, y,z), one directly obtains that the quantity ¥k = x?z is a constant of
motion for both problems, whereas y*z is another constant of motion for the first problem
but not for the second: in fact, any other independent constant of motion for the second
problem would be expressed by means of a non-analytic form, e.g. xyz — x%zlogx. One
then immediately deduces that the terms resonant with A, i.e. # € Ker A, are given by

a(y2)x + b(y*2)y
() = a(yzz)y “4.2)
e(y*2)z

where a, b, ¢ are (smooth) arbitrary functions of y?z. Instead, the terms resonant with A,
k' € Ker A;, are given by

a'(x’z, y')x + a"(x%z, y*2)y
B ) = { ¥'(x%2, y*2)x + b"(x%2, y22)y
c(xtz, yi2)z
showing that Ker At C Ker.4;. Notice also that the linear operator
o = x8; + yd, — 229, 4.3)
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generates a symmetry for any DS, which is described by the above VF ¢ = f3, (4.1), once
it is put in NF {i.e. with A(x) in the form (4.2)): this symmetry is just the scaling (leaving, in
particular, the quantity y*z invariant, ¢f (4.2)) in agreement with proposition 1 of section 3.

An example of VF which is in NF and admits a nonlinear (nonlinearizable) symmetry is
given by

x4+ x3z
fwy=1y+yz
=2z

which admits, in addition to the scaling (4.3), the symmetry operator
o= x3zax.

As already remarked, the main result of this paper is essentially of algebraic nature. In
addition to the examples mentioned briefly in the previous section, in the context of the
applications to the DS theory, let us also propose the following further example. Consider
the DS (with n =3, u = (x, y,2), > = 27 + %)

i==y+x(*—ze )
J=x+yr?—ze7?) (4.4)
g =—z+7% +yz(r? — ze”¥) + x2.

It is easy to verify (cf [20], where a more general class of examples are presented) that it
admits the following nonlinear symmetry:

g = y8; — xdy — x20;. 4.5)

Both the DS (4.4) and the symmetry (4.5) contain non-resonant terms, but one can easily
verify that, according to the above results, once reduced to NF, the DS is transformed into a
DS exhibiting rotational symmetry ¢ = y8; —xd,. It can be interesting to compare this result
with the ope obtained under another coordinate transformation which is usually considered
when dealing with DS, namely, the transformation to the coordinates of centre manifold. In
this example, the (unique) centre manifold is given by

z=rk.

Putting ¢ = z — r?e’, the DS (4.4) is transformed into
= —y—xte?
y=x—yte™ (4.6)
L=~ -yl +xp +2r%

and one can see that this system admits the rotation symmetry only on the centre manifold
t =0

The relationships between Lie symmetries, NF transformations, centre-manifold
reductions and other techniques in the theory of DS, including bifurcation theory and
Hamiltonian problems, are the subject of a number of works: we refer the reader, for
example, to [3-5,8-10,22] (see also [19-21, 25] and references therein), where a detailed
discussion can be found.
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