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Normal forms and nonlinear symmetries 
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t Dipartimento di Fisica, Universili di Pisa, Piazra Torricelli 2, 1-56126 Pisa, Italy 
t Centre de Physique ThBorique, Ecole Polytechnique, F-91128 Palaiseau, France 

Received 30 March 1994 

AbstracL We give some general theorems, and extensions of previous results, concerning the 
problem of transforming an algebra of vector fields into Poincare normal form. By means of 
a unifying algebraic language, we show the possibility of obtaining either a 'parallel' or 'joint' 
n o d  form of the vector fields in a definite way. which simplifies the w m c t i o n  of n o d  
forms, providing a precise restriction on their structure. The application to finite-dimensional 
dynamical systems and their Lie point symmetries is also discussed. 

1. Introduction and notations 

The problem of transforming a vector field (VQ (or an algebra of VFS) into normal form (NF) 
(in the sense of Poincar&Dulac-Birkho@ is an old and important topic [I-IO], not only 
for its algebraic aspects, but also for its applications in the theory of dynamical systems 
OS), especially in connection with symmetry properties [1-12]. 

Quite different approaches and points of view ('algebraic', 'analytical' or 'dynamical') 
for this problem can be found in the literature and it is not uncommon for the differences 
in the language to make it difficult to compare (even apparently unrelated but strongly 
connected) results. 

In this paper, we propose some general results, and extensions of previous statements, in 
an (essentially) self-contained presentation, using a geometrical approach similar to that in 
1121 with an abstract and 'unifying' algebraic language, but avoiding, as far as possible, any 
technicality (section 2). The applications to DS and their symmetries (Lie point symmetries) 
are discussed in section 3. 

Let us recall some basic definitions and fix our notation. Let U E M C R", where M 
is a smooth neighbourhood of the origin in R", and consider the space V of analytical VFs 
9 : M + T M  in R": they are in one-to-one correspondence with the elements of the space 
V of analytical functions f : M -+ R"; in component expansion, we shall write (here, and 
in the following, summed over repeated indices, unless otherwise stated) 

a 
aui 9 f ( u ) a ,  fi(u)- (i = 1,. . . , n ) .  (1.1) 

We assume that U = 0 is an isolated fixed point for f ( u ) ;  f ( u )  will also be written as a 
series expansion in the form 

m 
f Au + f = fij) (1.2) 

j = t  

5 Present address: Departamento de Fisica Teorica U, Universidad Complutense: Avenida Complutense, E28040 
Madrid. Spain (E-mail: ciwpa@ipifidpt.difi.unipi.it). 
11 The work of GG is partially supported by CNR grant 203-01-62 (E-mail: gaeta@orphee.polytechnique,fr). 
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where Au 
subspace of the homogeneous polynomial functions in V of degree j .  

induces a LiePoisson bracket {f, g) in V :  

G Cicogna and G Gaeta 

f i j )  is the linear part of f ,  is the nonlinear part and fu) E v(j) is the 

Given two VFs, (p = fa,  and + = ga. in V ,  the notion of Lie commutator [(p, +] in V 

ai - . (1.3) ( a3 [rp. +I = (f, gia, (f, gik = fiaigx - giaifi 

Also, a notion of scalar product can be introduced in each subspace V,j) 19,121. 

to A (which is also the Lie derivative CA along the VF A d . )  
Given an n x n matrix A ,  we denote by A : V + V the homological operator associated 

A(hk) = (AU)jaihx - (Ah)x (1.4) 

where h = h(u) E V. According to the classical Poincark-Dulac-Birkhoff definition [l], a 
(nonlinear) term h(u)  is said to be resonanf with A if (see also [9]) 

A'(h) E [ A ' U , ~ }  = 0 (1.5) 

and a VF, rp = (Au + h a , ,  is said to be in normal form (NF) if all nonlinear terms are 
resonant with A, i.e. f E Kerd+. If A is diagonal, with eigenvalues a,, . . . ,aa, a monomial 
hk(u) = U:'. . ..,up of degree j (with mi integer numbers such that Ci mi = j ,  mi > 0) is 
resonant if m p j  = ax, which is the usual 'resonance condition' for the eigenvalues [l] .  As 
is well known, the relevance of the above definitions is essentially due to the fact that, given 
a VF rp, all non-resonant terms can be removed by means of a coordinate transformation. 
As usual, in NF theory, these transformations are expressed by means of formal series, i.e. 
no assumption is made on their convergence (cf [I]). 

Notice that for both operators A and At one has, for each j ,  

A : Vu) + v ( j )  and A+ : v(j) -+ Vu) .  (1.6) 

If A = CA and B = Ls are the homological operators associated to two n x n matrices A 
and B ,  the operator dB - BA is just the homological operator C = LC associated to the 
matrix commutator C = [ A ,  B]. In particular, the three statements AB = BA, [ A ,  B] = 0 
and (Au, B u )  = 0 are equivalent. 

Finally, if A is any n x n matrix, we shall denote its (unique) decomposition into 
commuting semisimple (diagonalizable) and nilpotent parts by 

A = A, + A.. (1.7) 

2. The algebraic approach 

The main results will be obtained as a consequence of a series of simple lemmas, which 
can be of some independent interest: even if some of these are not new, it is convenient to 
give a complete list of all of them, together with a sketch of their proofs. 

Let" I. If [ A ,  El = 0 then [A,, B ]  = [ A ,  BSI =O. 



Normal forms and nonlinear symmetries 71 17 

Proof. This easily follows from writing the matrix A (or resp. B )  in its Jordan form and 
0 

Lemma 2. Given the matrix A, the set Kerd' of terms h(u) resonant with A is given by 
K(K(u) )u ,  where K is the most general matrix such that [ K ,  A + ]  = 0 and its entries Kij 
are functions of the time-independent analytical constants of motion K = K ( U )  of the linear 
system U = A+u [9, 121. 

Proof. Writing the equation d + ( h )  = 0 explicitly as a system of first-order partial 
differential equations 

then imposing the commutation properties in the generalized eigenspaces. 

one obtains a system 'with the same principal part' [13],'with characteristic equations 

(2.1') 
.. .. . .. . ... 

Applying standard procedures [13,9,12], one obtains that h = K u ,  where K is a matrix 
commuting with A+ and depends on the constants of integration of the subset of equations 
involving the first n terms duj/(A+u)j in (2.1'). These are just the constants of motion of 

13 

Lemma 3. is the homological operator 
associated to the semisimple part A, of A .  

Prooj. According to lemma 1, if K commutes with A + ,  then it also commutes with A, 
(= At).  On the other hand, the solutions of the linear systems U = A,u and U = A+u are 
combinations of terms eUii and tkeuJ', respectively. Therefore, theconstants of motion which 
can be consbucted for the second system, with the property of being time-independent and 
expressed in analytical form, are certainly also constants of motion of the first system (but 
the converse is not true). The statement of lemma 3 then follows from lemma 2.  13 

Lemma 4. If 'p = ( A u + f ) &  and 11, = (Bu+f)a, form a two-dimensional algebra, then it 
is possible to perform a (formal) coordinate wansformation which takes the nonlinear terms 
f into normal form with respect to A ,  and 

Proof. Up to a linear transformation, any two-dimensional algebra satisfies the 
commutation rule 

the problem U = A'u. 

K e r d  c Kerds; Ker& c Kerd,,  where 

with respect to B ('parallel normal form'). 

[% 11,I = 4 (2.2) 
where c is any constant (including c = 0). First of all, we can always put f into NF with 
respect to B ,  so. let us assume (without changing notation) 

where B+ is the homological operator associated to B+. Now, from (2.2), [ A ,  E ]  = cB, or 
[ A + ,  B + ]  = -EB+, which implies, in terms of the homological operators, 

i.e. d f ( f )  E Ker B+ or A+ : KerB+ r) KerB+, This ensures the possibility of performing 
another transformation, leaving the space KerB+ of the terms resonant with B invariant 
in such a way as to change the terms f into NF with respect to A .  Then, we can choose 
coordinates in such a way that: 

g E KerB' 

B+(d+(j)) = d+(B+(f))  - Ea+(%) = 0 

f E K e r d +  and f E K e r B + .  0 
We can now state the first main result. 
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Theorem 1 .  Let (o = f(u)a, = (Au + !)au, @ = g(u)a, = (Bu + i)a, satisfy 

G Cicogna and G Gaeta 

[rp. $1 = 0 (2.3) 

then, by means of a formal coordinate transformation, f ,  2 can be taken into a 'joint normal 
form' (JNF) of this type: 

f E Kerd' n Ker B, and j E Kerd, r l  Ker Bf. (2.4) 

Proof. From lemmas 3 and 4, we get 

f E Kerd' c K e r R  and f E KerB' C Ker& (2.5) 

Let us now write (2.3) step by step, with 

We have first 

[ A ,  B ]  = 0 (2.7) 

and 

IAu, gp)) - = 0 or d ( g d  = B(f(z)) (2.8) 

whereas, fork  > 2, 
k-1 

{Au,  g(k) )  - IBu, fik)] = C{fti), g(k-,tl)). (2.9) 
j=2 

Applying operator A, to (2.8), and using lemma 1, we obtain, thanks to (2.5). 

Ar(d(g(z))) = WL(Az))) = 0 

and also A&(*)) = 0, which implies 

ds(g(z)) =O, 
In fact, since A, is a diagonalizable matrix, we can choose coordinates such that Kerd, 
is the orthogonal complement to Rand,  in the space y2). Repeating the argument for the 
operator 0, applied to (2.8), we get similarly 

&(fil)) = 0. 

An immediate application of the Jacobi identity shows that if 

f ~ ) ,  g(i) E Kerd, nKerE3, V i ,  j = 2 , .  .., k - 1 

then the same i s  m e  for 
k-1 

{ f i j ) *  g( i ) )  and C[Aj), g@- j+ l l I ,  (2.10) 
j=Z 

This allows us to proceed inductively: applying the operators and Bs to (2.10), we can 
conclude, for all j ,  that f ~ )  E Ker& and gu) E Kerd,, which, together with (2.5). gives 
the result 0 
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The possibility of extending the above results (namely, lemma 4 and theorem 1) to 
algebras of dimension d > 2 is clearly related to the specific commutation properties of the 
algebra. We consider here some special cases. 

Theorem 2. Let us consider a d-dimensional algebra 8 of VFS spanned by pa = f.8, = 
(A,u + f)& (a = 1 , .  . . , d). Then: 

(i) If the algebra G is solvable, then all the nonlinear terms f can be put in parallel NF, 
namely 

(2.11) 

into a 

2 E Kerdz  for each a = 1,. . . , d. 

(ii) If the algebra 8 is nilpotent (in particular: abelian), then one can put all 
RUP precisely (with obvious notations) 

6 E (nKerdb . . )  "Kerd; for each a = 1, ..., d.  (2.12) 

(iii) In any solvable (resp.: nilpotent, or, in particular, abelian) subalgebra of a generic 
algebra G, all nonlinear terms can be put in parallel M as in (2.11) (resp.: in JNF as in 

b f o  

(2.12)). 

Proof. 
in 0 

If the algebra is solvable, let 'us consider the sequence of commutators terminating 

[p, p] = p(l), [pp'", $ 7 9  = p, . . . , [I@), p")] = 0 (2.13) 

where [p. p] = p(') stands for the subalgebra of all commutators [pa, pJ, etc. In the ideal 
@'"), spanned by v ( ~ ) ,  all nonlinear terms of the VFS can be taken in NF (or even in JNP if 
dimG('") > 1: indeed, in this case the subalgebra is abelian and theorem 1 can be directly 
applied). Using [p('"-I), p@-I)] = @) and 3 - 8Cm), we can repeat the argument of 
lemma 4 to also show that in @"'-I), parallel Nps can be obtained, and so on. If, now, the 
algebra 8 is nilpotent, let us consider the sequence of commutators terminating in 0 

[p, 471 = p['l(= p), [p, p] p[zl , . . . , [p, p['"l] = 0. (2.14) 

The first part of this theorem ensures (since nilpotency implies solvability) that all 2 can 
be taken in their respective Np: f E Kerd:. On the other hand, the last commutator in 
(2.14) shows that all fields in the abelian ideal @"'I spanned by p[ml commute with all the 
pa E 8. Then, the procedure followed in the proof of theorem 1 can be repeated for each 
pa E 8, using the last commutator in (2.14) to obtain (2.12). Statement (iii) is an immediate 
consequence. 0 

Remark 1 .  The result in theorem 1 and its extension in theorem 2(ii) are generalizations of 
theorem 2.27 of [7], which gives in fact 2 E nb Ker d b , s .  Notice that condition f E KerA+ 
is actually a rather stronger restriction for f than f E Kerd,, the space Kerd+ being, in 
general, considerably smaller than the space Kerd%, as simple examples can easily show. 
Notice also that, in general, it is not possible to extend the result in theorem 1 (and in 
2(ii) as well) to also have, for example, f E KerB or f E KerB+. The case of solvable 
algebras is quite different: e.g. if [p, @] = @, then [ A ,  B ]  = B ,  but this implies Bs = 0 
and therefore one gets, in this case, B, = 0. 

7 Any twodimensional nilpotent algebra is in fact abelian. Unfortunately, reference (71 came 10 our knowledge 
only after our paper [12]-which contains results already obtained in [71, although by different methods-was 
published. 
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Remark 2. In NF theory, it is usual to give special attention to the case of VFs with nonnal 
linear parts, i.e. [ A ,  A'] = 0 [ 121. Here, we will not consider this restriction: the general 
results given here can of course be specialized to this case (obtaining, among others, some 
of the results given in [12]). For instance, equation (2.12) becomes immediately, with this 
restriction, 

G Cicogna and G Gaeta 

J. E Ker& 
b 

(2.12') 

3. Applications to DS and their symmetry properties 

Let us now apply the above algebraic results to the case of (finite-dimensional) DS. With 
U = u( t )  E M E R". let 

U = f ( u )  = A u  + !(U) (3.1) 

be a DS, where li = du/dr and f(0) = 0. 

such that 
Denoting by 'p fa, the VF expressing the dynamical flow of this DS, any VF $ = ga,, 

I(P> *I = 0 (3.2) 

is the generator of a Lie point time-independent (LPTI) symmetry of this DS 114-161 (see 
also [ l l ,  12,17-211 and references therein). Therefore, according to theorem 1, one can 
choose coordinates in such a way that both VFS 'p and 9 are in m (2.4). In concrete cases, 
once the DS is given. a typical problem is that of finding its L ~ I  symmetries: then, the set 
of equations (2.7H2.9) may be used, in practice, in order to construct, recursively, step by 
step, the symmetry field, and the JNF condition (2.4) determines the nonlinear terms which 
may be removed, both in the DS and in the VF describing the symmehy. 

Remark 3. Clearly, it is not granted, in general, that, as for the NF transformations, the LPTI 
symmetries of a DS can be written as a series expansion (for a very recent and important 
result in this direction, see [221; examples of 'singular' LPTI symmetries can be found, e.g., 
in [lS, 191). Let us notice, however, that the method of proceeding step by step may be 
concretely useful in constructing 'approximate' symmetries, i.e. 'up to the a given (finite) 
order' [171 (see also [23]). Some sufficient conditions ensuring the existence of (polynomial) 
LpIl symmetries, and some explicit examples, can be found in [11,12,18-211. A (linear) 
symmetry which is always present (unless A,, the semisimple part of A,  is = 0) is given 
by the following proposition. 

Proposition I .  Any DS (3.1) which is in NF, i.e. with ,? E Kerd+, admits the linear 
symmetry generated by 

d = A,ua". (3.3) 

If A, is diagonalized, with real eigenvalues ai (i = 1,. . . , n). this symmetry generates the 
scaling ui -+ ui exp(& (E  E R). 
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Proof: Symmetry condition (3.2) is certainly satisfied by this U (3.3), indeed 

(Au + f, A+) = [f ,  A+) = 0 

as a consequence of the resonance assumption and lemma 3. cl 

This generalizes proposition 4 of [Ill, where a diagonalizable A was assumed, and 
another result contained in [9] which-in the present language-may be stated as follows. 
If the DS (3.1) is in NF, then (.‘+U)& is a Symmetry for the nonlinear part of the DS ri = f 
(but not necessarily for the fu l l  DS U = f ) .  Another property of LPTI symmetries and NFS, 
which is a direct consequence of (2.4), is given by the following proposition. 

Proposition 2 .  If the DS (3.1) admits a LPTI symmetry $ = ga, = (Bu + i)& and the 
fields p, @ are in JNF, then $ is also a symmetry for the linear semisimple part of the DS, 
i.e. for U = A,u (but the converse is not true: i.e. symmetries of this linear system are 
not necessarily symmetries for the full DS) and the linear semisimple part B,u& provides 
another symmetry (if Bs # 0) for the DS: 

(A,u, g) = 0 and (&U, f) = 0. (3.4) 

Clearly, the set (@I,  . . . , $,) of the LPTI symmetries of a DS spans a Lie algebrat 8: 
it always contains the VF p giving the dynamical Row. This algebra may be abelian (as 
in proposition 3 below) or not. An interesting example of non-abelian symmetry algebra 
can be constructed starting from a four-dimensional problem which has the ‘quaternionic 
structure’ 1241: the generators of its symmetry span the Lie algebra of the group SU(2) (in 
real form). 

. . . , @ r )  in this algebra 
depends on the properties of the algebra itself, according to theorem 2. In any case, 
however, being [p, $J = 0 for all a = 1 , .  . . , r ,  by the definition of symmetry, the JNF is 
possible for p and at least one of the $a, or better for all the @a which span an abelian 
subalgebra ‘H g 8. 

Let us consider finally the special case of linearizable DSS, i.e. DSS for which all terms 
are non-resonant and, therefore, can be removed by a (formal) coordinate transformation. 

The possibility of taking in parallel, or JNF,  the VFs (p, 

Remurk4. According to the definition, a DS (3.1) is linearizable if Ker& = (0). However, 
a simple consequence of JNF also indicates that a condition ensuring the linearizability of a 
DS is that it admits an LFTI symmetry @ = (Bu +i)a, such that Kerd+nKer& = (0) and, 
in general, the same is true if (nk KerBk,$)nKerd+ = (0). where $h = (Bhu+&)& E ‘H 
and ‘H is an abelian subalgebra contained in the algebra 8 of the admitted symmetries, as 
mentioned previously. 

We also have: 

t Actually, multiplying an LPn symmetry by any constant of motion of the DS gives another symmetry, so one 
should more correclly speak of a (finite-dimensional) module (rather lhan of an infinite-dimensional algebra) of 
symmetries [ZO]. Here, we are interested in the algebraic SWcNre, and, therefore. we are considering only 
‘independent’ (i.e. pointwise linearly independent) vm generating symmetries. 
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Pmposition 3. If a DS can be linearized, then it admits n independent commuting 
symmetries, which can be simultaneously taken into linear form by a coordinate 
transformation. If, in particular. the system has a diagonalizable A with real eigenvalues, 
tben-once it is linearized and A is diagonal-the dilations <j = uiaj (no sum over i) along 
each direction i are n linear commuting symmetries for the system. Conversely, if there 
is a coordinate system where the DS admits n independent linear commuting symmetries 
uj = Eiua. such that all Bi are semisimple, then the DS can be linearized. 

Proof. In the coordinates where the DS is linear, it is easy to construct n linear commuting 
symmetries Biua, by simply choosing n independent matrices Bj commuting among 
themselves and with A (if the matrices I ,  A ,  A', , . . ,A"-' are linearly independent, they 
immediately provide the mamces E,; even if this is not the case, the existence of n 
matrices Bj with the required properties is easily verified if A is put in Jordan form). The 
existence of n independent scalings in the case of diagonal A is obvious. Conversely, 
given n semisimple commuting matrices Bj, they can be simultaneously diagonalized: 
E, -+ diag(#), . . . ,#?$I); now, with respect to the basis spanned by the n (independent) 
vectors p(') (pf ' , .  ..,fit)), the symmetries ui = Eiua, become ui + <i = uiai (no 
sum over i). i.e. the independent dilations along the directions p"'. A DS admitting such n 
symmetries is necessarily linear. 

G Cicogna and G Gaeta 

4. Examples and concluding remarks 

We shall first illustrate the basic preliminary results of lemmas 2 and 3 by means of a simple 
example. Let us consider the vp = fa, with n = 3 

f = A u + h ( u )  A =  1 1 0 (4.1) 

where A is non-diagonalizable. Considering the two linear problems U = A,u and fi = A+u, 
and putting U G ( x .  y ,  z), one directly obtains that the quantity K = xzz is a constant of 
motion for both problems, whereas yzz  is another constant of motion for the first problem 
but not for the second: in fact, any other independent constant of motion for the second 
problem would be expressed by means of a non-analytic form, e.g. x y z  - x z z l o g x .  One 
then immediately deduces that the terms resonant with A, i.e. h E KerAc, are given by 

(: : 

a ( y 2 z ) x  + b ( y 2 z ) y  
h(u)  = a ( y 2 z ) y  (4.2) I C ( Y 2 Z ) Z  

1 c'(x22, Y2Z)Z 

where a ,  b, c are (smooth) arbitrary functions of y'z. Instead, the terms resonant with A,, 
h' E Ker A,, are given by 

a'(x2z. Y2Z)X + a"& Y2Z)Y 

h'(u) = b'(x2z, y2z)x  + b"(n2z, y%)y 

showing that KerA+ c KerA,. Notice also that the linear operator 

U = xa, + y a y  - 22a, (4.3) 
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generates a symmetry for any DS, which is described by the above w,fp = fa, (4.1), once 
it is put in NF (i.e. with h(u) in the form (4.2)): this symmetry is just the scaling (leaving, in 
particular, the quantity y2z invariant, cf (4.2)) in agreement with proposition 1 of section 3. 

An example of VF which is in NF and admits a nonlinear (nonlinearizable) symmetry is 
given by 

x + x3z 

f ( u )  = Y + Y 3 Z  
1-22 

which admits, in addition to the scaling (4.3), the symmetry operator 

3 U = x 2.3,. 

As already remarked. the main result of this paper is essentially of algebraic nature. In 
addition to the examples mentioned briefly in the previous section, in the context of the 
applications to the DS theory, let us also propose the following further example. Consider 
the DS (with n = 3, U (x. y. z), r2 = x 2  + yZ) 

x = - y + x ( r Z - z e -  Y )  

(4.4) 

It is easy to verify (cf [ZO],  where a more general class of examples are presented) that it 
admits the following nonlinear symmetry: 

(4.5) = ya, - xa, - X Z ~ , .  

Both the DS (4.4) and the symmetry (4.5) contain non-resonant terms, but one can easily 
verify that, according to the above results, once reduced to NF, the DS is transformed into a 
DS exhibiting rotational symmetry U = ya, -xa,. It can be interesting to compare this result 
with the one obtained under another coordinate transformation which is usually considered 
when dealing with DS, namely, the transformation to the coordinates of centre manifold. In 
this example, the (unique) centre manifold is given by 

z = r2eY. 

Putting < = z - rzey, the DS (4.4) is transformed into 

x = -y - x<eO 

y = x - yte-y (4.6) 

= -< - y<’e-Y + x< + 2r2< 

and one can see that this system admits the rotation symmetry only on the centre manifold 
< =o. 

The relationships between Lie symmetries, NF transformations, centre-manifold 
reductions and other techniques in the theory of DS, including bifurcation theory and 
Hamiltonian problems, are the subject of a number of works: we refer the reader, for 
example, to 13-5.8-10,221 (see also ,[19-21,25] and references therein), where a detailed 
discussion can be found. 
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